
Open Trace Format API Specification
Version 1.1

Andreas Knüpfer, Holger Brunst

Center for High Performance Computing
University of Dresden, Germany

{knuepfer|brunst}@zhr.tu-dresden.de

Allen D. Malony, Sameer S. Shende

ParaTools, Inc.

{malony,sameer}@paratools.com

November 13, 2006

Abstract

The Open Trace Format (OTF) is a new trace definition and representation for use with large-
scale parallel platforms. OTF addresses three objectives:openness, flexibility, and performance.
The OTF specification is provided by this document and represents the first milestone deliverable
of the University of California (UC), Lawrence Livermore National Laboratory (LLNL), subcon-
tract #B548849. The second and third phases of the UC/LLNL project will use this specification
to implement OTF writing and reading libraries, as part of a complete tracing solution for the
LLNL IBM BG/L system.

1

Contents

1 Introduction 1

2 OTF Design 2

2.1 ASCII Format .. 2

2.2 Streams and Files 2

2.3 State Machine .. . 3

2.4 Sorted Streams .. . 3

2.5 Binary Search for Time Stamps 4

2.6 Definition Record Types 4

2.7 Event Record Types 4

2.8 Snapshot Record Types 5

2.9 Statistical Summary Record Types 5

3 Application Programming Interface 5

3.1 Trace Write Interface 6

3.2 Trace Read Interface 9

3.3 Stream Management Interface 15

3.4 Handler Class .. . 16

4 Application Examples 17

4.1 Trace Library .. . 17

4.2 Trace Merging .. . 17

4.3 Parallel Reading and Searching 18

5 Conclusion 18

A Global Trace Record Output Handler Interface 19

A.1 Function Documentation 20

B Global Trace Record Input Handler Interface 36

B.1 Detailed Description 37

B.2 Function Documentation 37

C Changelog 50

i

1 Introduction

The development of scalable tracing tools for high-performance computing (HPC) platforms with
thousands of processors requires both a low-overhead tracemeasurement system to generate the trace
data and efficient trace analysis tools to process the data. Of vital importance to tracing tool develop-
ment is an open specification of the trace information that provides a target for trace generation and
enables trace analysis and visualization tools to operate efficiently at large scale. The integration of
facilities for trace generation with trace analysis and visualization tools is facilitated by a well-defined
trace format with open, public domain libraries for writingand reading the trace in that format. In
addition, features of the trace format can directly supportanalysis tool capabilities to speedup up trace
data access and processing. These two benefits combined addresses concerns for a format that can
target future cross-platform tracing solutions for high-end ASC production systems.

The current document gives a detailed specification of the Open Trace Format (OTF), created specif-
ically to support the development of scalable performance tracing tools for the IBM BG/L machine.
The specifications covers the trace storage and processing model, record types, and an API specifi-
cation for reading and writing OTF event traces. The format addresses large applications written in
an arbitrary combination of Fortran77, Fortran (90/95/etc.), C, and C++. The trace representation
supports efficient scalable access and information processing by structural mechanisms for fast query
and features to increase trace processing flexibility.

The OTF specification shall form the basis for a trace measurement and analysis toolset. In particular,
the OTF will be demonstrated by its use in the TAU performancesystem for trace conversion and the
Vampir NG (VNG) for trace analysis and visualization. Figure 1 shows the integration of OTF in this
suite of tools. TAU presently generates VTF3, EPILOG, and parallel profile files from TAU-formatted
traces. The VTF3 files can be input to Vampir/VNG, but OTF is required to enable its full efficiency
and performance features. Notice, STF is readable by Vampir/VNG, but lacks the openess of the
format.

parallel
profiles

TAU
Tracing

OTF writing library

OTF reading library

EPILOG

VTF3

OTFPost−processor
Trace

TAU
traces

Vampir
/ VNG

Figure 1: Integration of OTF in the TAU Performance Systems and Vampir/VNG.

The remainder of the document is organized in two main sections. Section 2 discusses the design and
architecture of OTF. Section 3 presents the application programming interface for OTF, consisting of
seven components for reading, writing, managing, and buffering OTF traces. Then the definition of
specific records types are listed in Section B. The document concludes with a few OTF application
examples in Section 4.

1

2 OTF Design

The design of OTF is directed at three objectives: openness,flexibility, and performance. The open
format defines the record types and file structure so that OTF trace files can be both generated and read
correctly. A OTF writing and reading library will be provided later for these purposes. The flexibility
objective in the OTF design comes from choices made with regards to trace data representation and
storage, as well as parameters that OTF tools can control to organize and work with OTF traces.
Performance is determine by how efficient and fast OTF trace query and manipulation can be done.
This section discusses the components of the OTF design in the context of these objectives.

2.1 ASCII Format

OTF uses a special ASCII data representation to encode its data items. ASCII encoding allows re-
duced storage sizes for small values as leading zeros can be omitted. All numbers and tokens are
encoded in hexadecimal without the need of a special prefix which allows for a more efficient back
and forth transformation compared to decimal numbers. Altogether, this enables a very efficient for-
mat with respect to storage size, human readability, and search capabilities on timed event records.
Furthermore, it avoids platform dependent byte ordering issues.

2.2 Streams and Files

In order to support fast and selective access to large amounts of performance trace data, OTF is based
on astream-model, i. e. single separate units representing segments of the overall data. OTF streams
may contain multiple independent processes whereas a process belongs to a single stream exclusively.
The latter is needed for consistency reasons and cannot be relaxed without reducing the format’s
expressiveness.

Each stream is represented by multiple files which store definition records (see Section 2.6), perfor-
mance events (see Section 2.7), status information (see Section 2.8), and event summaries (see Section
2.9) separately. A single globalmaster fileholds the necessary information for the process to stream
mappings.

The names of trace file parts follow a strict naming convention. Each file name starts with an arbitrary
common prefix which can be defined by the user. It is followed bya token identifier used for internal
purposes (process mapping) and a suffix according to the file type. OTF files arenot intended to be
accessed directly but through the OTF library’s API. This isa strict requirement to guarantee future
compatibility.

The master file is always named ’<name>.otf’. The global definition file is named
’<name>.0.def’. Events and local definitions are placed in files ’<name>.x.events’ and
’<name>.x.defs’ where the latter files are optional. Snapshots and statistics are placed in files
named ’<name>.x.snaps’ and ’<name>.x.stats’ which are optional, too.

When copying, moving or deleting traces it is important to take all according files into account. Delet-
ing or modifying single files of a trace will render the whole trace invalid!

The OTF library allows to transparently read and write tracedata independently of the underlying
partitioning of streams. Yet, if requested partitioning parameters can be queried and altered. This

2

 definitions [name.x.def]

 events [name.x.events]

 statistics [name.x.stats]

 snapshots [name.x.snaps]

 events

 snapshots

 statistics

 definitions

 events

 snapshots

 statistics

 definitions

global definitions
[name.0.def]

 index [name.otf]

Figure 2: Files belonging to an OTF trace.

additional information can be used for various purposes. A good example is the tuning of the parallel
loading process which obviously depends on the inherent process to stream mapping.

Merging with respect to the temporal order of the traced events is done on the fly by the library. Apart
from that, the OTF library is able to access trace data consisting of n files by using a given number
of m file descriptors with1 ≤ m < n. This is an important feature to maintain scalability on very
complex traces.

Figure 3 gives a high-level view of the OTF architecture showing streams and files used by the trace
generation and analysis components.

2.3 State Machine

Within every OTF file, records are arranged as single lines oftext whereas the detailed structure of
every record type is defined separately.

However, some very frequently used properties are not included in the record lines but are handled by
a state machine. This includes time stamp information, process/thread information and maybe others.
For those there are special record types internally that setthe respective property to a value. This value
is then going to be valid for all following records until reassigned. With this approach, for example,
time stamps need to be stored only once when multiple recordsrefer to them. The read and write
handlers for all record types are not affected by this and will remain as known by existing trace format
libraries like VTF3.

2.4 Sorted Streams

Every OTF file needs to be sorted in temporal order. Unsorted files are regarded invalid and no
sorting operation will be made available. There is no need towrite unsorted traces in the first place.

3

TAU
trace

master file

P
o

st
−

p
ro

ce
ss

o
r

T
ra

ce

OTF reading library

TAU

Tracing

OTF
streams

OTF writing library

/ VNG
Vampir

Figure 3: OTF Streams and File Architecture

Furthermore, OTF is designed to handle very huge traces and explicitly sorting streams won’t scale
well for very big streams.

2.5 Binary Search for Time Stamps

All OTF files can be searched very efficiently for time stamps in order to support fast selective ac-
cess. As records are always sorted by time stamps such that binary search is applicable. The search
mechanism is based on the fact that record boundaries can be quickly identified in the ASCII format.

2.6 Definition Record Types

As usual with trace formats, there is always a number of definition records. Such records carry some
global properties like timer resolution, process count, etc. Furthermore, they define tokens to be
referenced by event records, which allows for a more efficient encoding.

Definitions can be contained in single streams or globally asdesired. There will always be a separate
file for definition records. This makes it possible to define tokens late without disturbing the sorting
order of events. All definitions are accompanied by a stream identifier which tells the scope of the
definition - stream specific or global.

With OTF, all identifiers are tokens, not indices. That meansa set ofN identifiers is not restricted to
{0, 1, ..., N − 1}. The value of zero (0) is always a reserved token used for special purposes. Apart
from that, actual numerical values of identifiers are not important. Identifiers are only compared with
respect to= resp. 6=, where<, > and hashing operations might be used for internal optimization of
table lookup and so on. Tokens are always of typeuint32_t, i. e. unsigned integers of 32 bit size.

2.7 Event Record Types

Event records are the actual payload for traces. There is oneevent file per stream, which is sorted in
temporal order.

4

2.8 Snapshot Record Types

Usually, traces are read linearly from the beginning. As OTFintroduces the possibility to access
arbitrary time stamps fast, some auxiliary information becomes necessary.

In order to start reading from an arbitrary time stamp, the current state of all participating processes
needs to be known. If this information is not available from having read all preceding records as well,
it needs to be stored explicitly. This is whatsnapshot recordsare designed for.

Snapshots provide the call stack (i.e. all active function calls), a list of pending messages, ongoing
I/O activities, current OpenMP regions, etc... at a point intime (not including events at that very time
stamp itself). Based on this information one can start reading event records at that very time stamp.

Snapshots are not generated by the OTF library itself but must explicitly be added. However, because
they live in a separate file, it is possible to add/manipulate/replace/delete snapshots of a stream without
affecting event data.

It is suggested to create snapshot information for time stamps on regular time distances. Different
granularities for different phases of a trace might be convenient as well. Snapshots can be added right
after trace file generation as an automated batch job or lateron based on specific preferences.

2.9 Statistical Summary Record Types

A second class of auxiliary information is provided bysummary records. They provide an overview
over a whole interval of time, which might serve as a hint whether to read all events of that interval of
time or not.

The data provided for this purpose is not explicit values forparticular intervals of time but in a differ-
ential fashion like follows:

In order to provide summary information about a monotonous increasing propertyp(t) for a time
interval [a, b], store the valuesp(a) andp(b). The resultp([a, b]) can be computed as

p([a, b]) := p(b) − p(a).

With n points in timet0, ...tn−1, there aren ∗ (n − 1) possible interval resultsp([ti, tj]), i 6= j of
varying granularity that can be queried directly.

In comparison, withn explicit intervals potentially expensive accumulation ofmultiple (small) time
intervals would be necessary to query for more than then basic intervals.

Like snapshots, summaries can be added/modified/replaced/deleted without affecting events. Also,
they need to be created explicitly and are not generated by the OTF library.

3 Application Programming Interface

The application programming interface (API) consists of seven components as shown in Figure 4.
There are high level trace read and write interfaces calledReader andWriter that address whole
traces. Both refer to the stream management interfaceMaster. For dealing with single streams, read
and write access is handled byRStream andWStream. Finally, the low level access to single files

5

is left to theRBuffer resp.WBuffer. The five high level interfaces are intended to be public, while
the two low level interfaces are for internal use only.

All seven components are described below. See Section 4 for typical application examples for them.
All OTF components and interfaces are in pure C.

Writer

+streams: WStream**

+open(namestub,m)

+close(this)

+assignProcess(this,process,stream)

+mapProcess(this,process)

+int writeXYZ(this,...)

WStream

+defBuffer: WBuffer*

+eventBuffer: WBuffer*

+snapshotBuffer: WBuffer*

+statisticsBuffer: WBuffer*

+getAbcBuffer(this)

+writeXyz(this,...)

WBuffer

Master

+append(this:VTF4MasterControl*,in argument:uint32_t,
 in value:uint32_t): int

Reader

+streams: RStream**

+open(namestub)

+readDefinitions(this,handlers)

+readEvents(this,handlers)

+readSnapshots(this,handlers)

+readStatistics(this,handlers)

+disableProcess(this,process)

+setTimeInterval(this,minTime,maxTime)

RStream

+open()

+close()

+getAbcBuffer()

RBuffer

+open()

+close()

+jump(this,filepos)

+searchTime(this,time)

HandlerArray

+processXyzRecord(this:void*,...): int

Figure 4: OTF API Classes Overview

3.1 Trace Write Interface

OTF has a low level and a high level trace writing interface. Latter is for simultaneous writing of
multiple streams (files). The low level interface targets a single streams only.

3.1.1 Global Write Interface

The classOTF_Writer and the associated functions are for writing traces with multiple streams.

OTF_Writer* OTF_Writer_open(char* fileNamePrefix, uint32_t
numberOfStreams, OTF_FileManager* fileManager);

Open a new OTF_Writer withnumberOfStreams automatic streams,numberOfStreams=0
means unlimited. Processes are assigned to up tonumberOfStreams streams on demand.
If processes are assigned with a call toOTF_Writer_assignProcess() explicitly after
numberOfStreams streams are present already, this limit could be exceeded.

int OTF_Writer_close(OTF_Writer* writer);

Close all files and delete the OTF_Writer object.

6

void OTF_Writer_setFormat(OTF_Writer* writer,
uint32_t format);

Set the default ouput format. The format is applied to all streams opened by the writer.formatmay
beOTF_WSTREAM_FORMAT_SHORT or OTF_WSTREAM_FORMAT_LONG.

int OTF_Writer_setCompression(OTF_Writer* writer,
OTF_FileCompression compression);

Set the standard compression method for all buffers managedby this writer.compressionmay be
OTF_FILECOMPRESSION_UNCOMPRESSEDorOTF_FILECOMPRESSION_COMPRESSED. The
function returns 1 on success or 0 on error.

uint32_t OTF_Writer_assignProcess(OTF_Writer* writer,
uint32_t process, uint32_t stream);

Assign the given ’process’ to the specified ’stream’ explicitly. Mind that 0 is not a valid stream id but
a reserved value. Return error code, where 0 marks success.

int OTF_Writer_write<RecordType>(OTF_Writer* writer, ...);

Writes a record of type <Record Type> to an open stream. Thereis a specific version for every record
type with customized signature. See Appendix A for a complete description. Every record is written
to the proper stream and to the appropriate file inside each stream.

3.1.2 Local Write Interface

The classOTF_WStream and the associated functions are for writing single streamsof a trace.

OTF_WStream* OTF_WStream_open(const char* namestub,
uint32_t id,
OTF_FileManager* fileManager);

Open a new writer stream with name prefix ’namestub’ and token’id’ which must be unique.

int OTF_WStream_close(OTF_WStream* wstream);

Close and delete an openOTF_WStream object.

OTF_WBuffer* OTF_WStream_getDefBuffer(
OTF_WStream* wstream);

Return the current streams definitions buffer, which is allocated on demand if not already existing.

OTF_WBuffer* OTF_WStream_getEventBuffer(
OTF_WStream* wstream);

Return the current streams events buffer, which is allocated on demand if not already existing.

7

OTF_WBuffer* OTF_WStream_getSnapshotBuffer(
OTF_WStream* wstream);

Return the current streams snapshots buffer, which is allocated on demand if not already existing.

OTF_WBuffer* OTF_WStream_getStatsBuffer(
OTF_WStream* wstream);

Return the current streams summaries buffer, which is allocated on demand if not already existing.

int OTF_WStream_write<Record Type>(OTF_WStream* wstream, ...);

Write a record of type <Record Type> to the stream ’wstream’.Every record is written to the appro-
priate file inside the current stream.

3.1.3 Low Level File Write Interface

The classOTF_WBuffer and the associated functions are for writing single files of astream. This is
for internal use only.

OTF_WBuffer* OTF_WBuffer_open(const char* filename,
OTF_FileManager* fileManager);

constructor - internal use only

int OTF_WBuffer_close(OTF_WBuffer* wbuffer);

destructor - internal use only

int OTF_WBuffer_setSize(OTF_WBuffer* wbuffer, size_t size);

Set the size of the memory buffer. Cannot shrink buffer but only extend afterwards.

int OTF_WBuffer_flush(OTF_WBuffer* wbuffer);

Writes the buffer contents to file and marks the buffer empty again.

int OTF_WBuffer_guarantee(OTF_WBuffer* wbuffer,
size_t space);

Ask the buffer to guarantee at least ’space’ bytes at currentwriting position before the next flush is
necessary. Return 1 on success.

int OTF_WBuffer_setTimeAndProcess(OTF_WBuffer* wbuffer,
uint64_t t, uint32_t p);

Set process state machine to ’p’ and time stamp state machineto ’t’. If ’p’ is the current process and
’t’ is the current time stamp, nothing is done. If the processhas changed, a process record will be

8

written. If the time has changed, the new time stamp and the current process will be written. If ’t’ is
lower than the current time stamp, it is regarded as an error.Return != 1 on success and 0 on error.

Furthermore, there are basic write operations modifying the memory buffer:

uint32_t OTF_WBuffer_writeKeyword(OTF_WBuffer* wbuffer,
const char* keyword);

Append a keyword to the write buffer. A key word is a string without quotes. Buffer flush is done if
necessary. Return the number of bytes written.

uint32_t OTF_WBuffer_writeString(OTF_WBuffer* wbuffer,
const char* string);

Append a string to the write buffer. A string is surrounded byquotes. Buffer flush is done if necessary.
Return the number of bytes written.

uint32_t OTF_WBuffer_writeChar(OTF_WBuffer* wbuffer,
const char character);

Append a char to the write buffer. Buffer flush is done if necessary. Return the number of bytes
written (=1).

uint32_t OTF_WBuffer_writeUint32(OTF_WBuffer* wbuffer,
uint32_t value);

This function appends an unsigned integer ’value’ in hex format to the write buffer. Buffer flush is
done if necessary. The return value is the number of characters written.

uint32_t OTF_WBuffer_writeUint64(OTF_WBuffer* wbuffer,
uint64_t value);

This function appends an 64bit unsigned integer ’value’ in hex format to the write buffer. Buffer flush
is done if necessary. The return value is the number of characters written.

uint32_t OTF_WBuffer_writeNewline(OTF_WBuffer* wbuffer);

Append a newline character to the buffer. Buffer flush is doneif necessary. Return the number of
bytes written.

3.2 Trace Read Interface

Similar to the writing interface, OTF comes with a dual layerreading interface. The global inter-
face provides transparent access to multiple streams whilethe local interface allows access to single
streams only.

9

3.2.1 Global Read Interface

The classOTF_Readerand the associated functions are for reading traces with multiple streams.

OTF_Reader* OTF_Reader_open(const char* namestub,
OTF_FileManager* fileManager);

Open OTF trace.

int OTF_Reader_close(OTF_Reader* reader);

Close OTF trace and delete theOTF_Reader* object.

int OTF_Reader_readDefinitions(OTF_Reader* reader,
OTF_HandlerArray* handlers);

This function reads definition records from trace and calls the appropriate handlers from the
OTF_HandlerArray object given. The default valuecount=0 will read all available records.

Inside the call-back, handlers may return several pre-defined constants in order to influence he ba-
haviour of OTF, likeOTF_RETURN_OK , OTF_RETURN_BREAK , OTF_RETURN_ABORT .

int OTF_Reader_readEvents(OTF_Reader* reader,
OTF_HandlerArray* handlers);

This function reads event records from trace and calls the appropriate handlers from the
OTF_HandlerArray object given.

CompareOTF_Reader_readDefinitions().

int OTF_Reader_readSnapshots(OTF_Reader* reader,
OTF_HandlerArray* handlers);

This function reads snapshot records from trace and calls the appropriate handlers from the
OTF_HandlerArray object given.

CompareOTF_Reader_readDefinitions().

int OTF_Reader_readStatistics(OTF_Reader* reader,
OTF_HandlerArray* handlers);

This function reads summary records from trace and calls theappropriate handlers from the
OTF_HandlerArray object given.

CompareOTF_Reader_readDefinitions().

OTF_RStream* OTF_Reader_getStream(OTF_Reader* reader,
uint32_t id);

Search the stream with the given ’id’ and return it.

10

int OTF_Reader_disableProcess(OTF_Reader* reader,
uint32_t processId);

Remove the process with the given ’processid’ from active process. That means filtering out this
process from reading - no records associated with this process are delivered anymore. Return 1 on
success.

void OTF_Reader_setTimeInterval(OTF_Reader* reader,
uint64_t minTime, uint64_t maxTime);

Set ’minTime’ and ’maxTime’ of OTF_Reader. That means further reading is restricted resp. filtered
according to this time interval.

void OTF_Reader_reset(OTF_Reader* reader);

Reset all processes active and the time interval to the default [0,∞].

3.2.2 Local Read Interface

The classOTF_RStream and the associated functions are for reading single streamsof a trace.

OTF_RStream* OTF_RStream_open(const char* namestub,
uint32_t id,
OTF_FileManager* fileManager);

Open an existing stream with ’id’.

int OTF_RStream_close(OTF_RStream* rstream);

Close and delete an open stream reader object.

int OTF_RStream_readDefinitions(OTF_RStream* rstream,
OTF_HandlerArray* handlers);

This function reads definition records from stream and callsthe appropriate handlers from the
OTF_HandlerArray object given. The default valuecount=0 will read all available records.

Inside the call-back, handlers may return several pre-defined constants in order to in-
fluence he bahaviour of OTF, likeOTF_RETURN_NULL , OTF_RETURN_BREAK ,
OTF_RETURN_ABORT .

int OTF_RStream_readEvents(OTF_RStream* rstream,
OTF_HandlerArray* handlers);

This function reads event records from stream and calls the appropriate handlers from the
OTF_HandlerArray object given.

CompareOTF_RStream_readDefinitions().

11

int OTF_RStream_readSnapshots(OTF_RStream* rstream,
OTF_HandlerArray* handlers);

This function reads snapshot records from stream and calls the appropriate handlers from the
OTF_HandlerArray object given.

CompareOTF_RStream_readDefinitions().

int OTF_RStream_readStatistics(OTF_RStream* rstream,
OTF_HandlerArray* handlers);

This function reads summary records from stream and calls the appropriate handlers from the
OTF_HandlerArray object given.

CompareOTF_RStream_readDefinitions().

OTF_RBuffer* OTF_RStream_getDefBuffer(
OTF_RStream* rstream);

Return the streams definition buffer, opened on demand.

OTF_RBuffer* OTF_RStream_getEventBuffer(
OTF_RStream* rstream);

Return the streams event buffer, opened on demand.

OTF_RBuffer* OTF_RStream_getSnapsBuffer(
OTF_RStream* rstream);

Return the streams snapshots buffer, opened on demand.

OTF_RBuffer* OTF_RStream_getStatsBuffer(
OTF_RStream* rstream);

Return the streams summary buffer, opened on demand.

3.2.3 Low Level File Read Interface

The classOTF_RBuffer and the associated functions are for reading single files of astream. This is
for internal use only.

OTF_RBuffer* OTF_RBuffer_open(const char* filename,
OTF_FileManager* fileManager);

constructor - internal use only

int OTF_RBuffer_close(OTF_RBuffer* rbuffer);

destructor - internal use only

12

int OTF_RBuffer_setSize(OTF_RBuffer* rbuffer, size_t size);

Set memory buffer size. Cannot shrink buffer but only extend.

int OTF_RBuffer_setJumpSize(OTF_RBuffer* rbuffer,
size_t size);

Set ’jumpsize’, a parameter for binary searchin a file. Return 0 if ’size’ is greater than the buffer size.

char* OTF_RBuffer_getRecord(OTF_RBuffer* rbuffer);

Make the next record availabe from the buffer. Return the pointer to the record string which is termi-
nated by ’\n’ not ’\0’ ! This function must be called before any record access. Itensures the record
is available completely in the buffer. Furthermore, time and process information is kept track of. It
is recommended to use the ’OTF_RBuffer_readXXX()’ functions below to read record components
instead of parsing manually. In any case, after reading ’OTF_RBuffer_readNewline()’ needs to be
called which proceeds to the next record begin no matter if there are still characters from the current
record present or not.

int OTF_RBuffer_guaranteeRecord(OTF_RBuffer* rbuffer);

Ask the buffer to guarantee at least one complete record at the current read position inside the buffer.
This means one line, e.g. ’\n’ character. If no complete record is found the buffer has tobe advanced
by reading new contents from file. Return 1 on success, 0 meansthe file is exceeded.

void OTF_RBuffer_printRecord(OTF_RBuffer* rbuffer);

Print the record at the current buffer position, i.e. until the next newline character. This is for debug-
ging purposes only and won’t modify the buffer in any way.

int OTF_RBuffer_jump(OTF_RBuffer* rbuffer, uint64_t filepos);

Jump to the given file position and restore buffer and references as if the buffer had reached the
position by advancing through the file linearly. In particular, find the next record start, then find next
time stamp and process specification in order to set ’time’ and ’process’ to true values. Return error
code 1 on success. Otherwise, the file is not that large or there are no appropriate time and process
specifications on the tail of the file. In that case the buffer contents is undefined.

uint64_t OTF_RBuffer_readUint64(OTF_RBuffer* rbuffer);

Read an 64bit unsigned integer in hex format from buffer and return it.

uint32_t OTF_RBuffer_readUint32(OTF_RBuffer* rbuffer);

Read an unsigned integer in hex format from buffer and returnit.

const char* OTF_RBuffer_readString(OTF_RBuffer* rbuffer);

Read a string from buffer and return it.

13

uint32_t OTF_RBuffer_readArray(OTF_RBuffer* rbuffer,
uint32_t* array);

Read a array ofuint32_t integers from buffer and return the number of elements.

int OTF_RBuffer_testChar(OTF_RBuffer* rbuffer, char c);

Test if the next character equals the given one (leading spaces are ignored). If the right character is
found, return 1, and advance by 1 step. If the character was not found, keep the buffer position such
that the test can be repeated for another character.

int OTF_RBuffer_testString(OTF_RBuffer* rbuffer,
const char* string);

Test if the next string equals the given one (leading spaces are ignored). If the right string is found,
return 1, and advance the buffer position. If the string was not found, keep the buffer position such
that the test can be repeated for another string.

int OTF_RBuffer_readNewline(OTF_RBuffer* rbuffer);

Read a newline such that the buffer position is at the next record beginning. Skip all characters found,
assume they are to be ignored. Return 1 on success, 0 on error.

void OTF_RBuffer_skipSpaces(OTF_RBuffer* rbuffer);

Advance the buffer position while there are spaces.

void OTF_RBuffer_skipKeyword(OTF_RBuffer* rbuffer);

Advance the buffer position while there are capital letters.

uint64_t OTF_RBuffer_getCurrentTime(OTF_RBuffer* rbuffer);

Return the current time of the buffer from state machine.

void OTF_RBuffer_setCurrentTime(OTF_RBuffer* rbuffer,
uint64_t time);

Set the current time of the buffers state machine to the givenone.

uint32_t OTF_RBuffer_getCurrentProcess(
OTF_RBuffer* rbuffer);

Return the current process of the buffer from state machine.

void OTF_RBuffer_setCurrentProcess(OTF_RBuffer* rbuffer,
uint32_t process);

Set the current process of the buffers state machine to the given one.

14

int OTF_RBuffer_searchTime(OTF_RBuffer* rbuffer,
uint64_t time);

Search the buffer for the given time and set the buffer position to the next record after that time. Return
1 on success, 0 on error.

int OTF_RBuffer_getFirstLastTime(OTF_RBuffer* rbuffer,
uint64_t filesize);

Determine buffers firstTime and lastTime if not already set.Return 1 on success, 0 on error.

3.3 Stream Management Interface

The classOTF_MasterControl handles the mapping from processes to streams and vice versa. It is
intended for internal use only as its functionality can be accessed by higher level interfaces. This is
the basic interface (not complete):

OTF_MasterControl* OTF_MasterControl_new();

Create an emptyOTF_MasterControl structure. The returned object must be freed by
OTF_MasterControl_finish().

OTF_MasterControl* OTF_MasterControl_read(
const char* namestub);

Read a master control file according to namestub and initialize the newly created
OTF_MasterControl structure accordingly. The returned object must be freed by
OTF_MasterControl_finish().

int OTF_MasterControl_finish(OTF_MasterControl* masterCtrl);

Destructor, deleteOTF_MasterControl object.

int OTF_MasterControl_write(OTF_MasterControl* masterCtrl,
const char* namestub);

Write a master control file with the current contents of the given object, return 1 on success.

int OTF_MasterControl_append(OTF_MasterControl* masterCtrl,
uint32_t argument, uint32_t value);

Append the mappingargument to valueto the master control structure, return 0 if this conflicts with
the current mapping.

uint32_t OTF_MasterControl_getNewStreamId(
OTF_MasterControl* masterCtrl);

Return a previously unused argument. Of course, one cannot avoid collisions with arguments explic-
itly defined later on.

15

OTF_MapEntry* OTF_MasterControl_getEntry(
OTF_MasterControl* masterCtrl, uint32_t argument);

Return entry for the given argument or NULL.

uint32_t OTF_MasterControl_mapReverse(OTF_MasterControl* masterCtrl,
uint32_t value);

Return the argument to the given value. If no mapping was defined make up a new one.

int OTF_MasterControl_check(OTF_MasterControl* masterCtrl);

Check if the current mapping is consistent in itself. Return1 on success.

3.4 Handler Class

The classOTF_HandlerArray contains a list of record type specific handlers with customized sig-
natures.

OTF_HandlerArray* OTF_HandlerArray_open();

Open a new array of handlers.

int OTF_HandlerArray_close(OTF_HandlerArray* handlers);

Close and delete a OTF_HandlerArray object.

int OTF_HandlerArray_setHandler(OTF_HandlerArray* handlers,
OTFFunctionPointer* pointer, uint32_t recordtype);

Assign the function pointer to your own handler of the given record type. Appendix B lists all sup-
ported record types and their respective handler parameterizations.

All call-back handlers have anint return value which is supposed to deliver0. Other return values
are regarded as an error and reading will terminate immediately.

int OTF_HandlerArray_getCopyHandler(OTF_HandlerArray* handlers,
OTF_Writer* writer);

Provide copy handlers directly to all record types that use the givenOTF_Writer* object for output.

int OTF_HandlerArray_setFirstHandlerArg(
OTF_HandlerArray* handlers, void* firsthandlerarg,
uint32_t recordtype);

Assign thefirst argumentto your own handler of the given record type. Thefirst argumentis an
arbitrary pointer of typevoid* . This pointer provides a user data structure inside the handler call
without the necessity of using a global variable. The user supplied data structure has to be casted to
void* forth and back in order to comply with generic interface.

16

4 Application Examples

Some typical application examples shall emphasize the usage of the different interfaces.

4.1 Trace Library

Within a trace library, the OTF library will be used in order to flush in-memory event buffers to trace
file once in a while. Usually this is performed by every process/thread independently. Communication
inside the trace library should be avoided if possible.

Under those conditions, the local write interface is most convenient. Every process/thread will open
an exclusive streamOTF_WStream with an unique identifier. Thus, allN processes can write their
events toN different stream independently.

Definition records can be added at any time: in the beginning,during tracing or in the end. If there are
local (process/thread specific) definitions, they go the therespective stream. Global definitions can be
written to the special stream with identifier0, which is reserved for such purposes.

Finally, one process (the master) has to write the master control file, which states the mapping of
processes/threads to streams. In this case, it will be a simple 1 : 1 mapping. So, there is a valid trace
without merging or reprocessing. The event data need not to be touched again.

However, reprocessing might be necessary in order to synchronize timers, translate different local
token sets to a single consistent global token set or other post-processing steps. Furthermore, snapshot
and summary information are to be added to this trace later. This might be combined with explicit
merging like explained in the next scenario.

4.2 Trace Merging

Merging is not strictly necessary if traces are generated like outlined above. However, one might
want to create a different granularity with the mapping of processes/thread to streams. For example,
one wants to have fixed number ofM < N streams such that efficient parallel input is possible on
a parallel analysis environment withM nodes. Or a fixed number ofK processes/threads might be
desirable.

The actual merging operation is supported by the OTF libraryitself already. Everything that is left to
do is reading a trace with the given granularity and writing it again with another. Therefore, reading
should be performed via the global read interface. Otherwise, merging is not handled by OTF.

The copy handlers provided by the read interface can be used directly. It requires just anOTF_Writer
object of the global write interface. It has to be initialized with the number of output streams. Alter-
natively, the mapping can also be defined explicitly.

If, besides merging, additional translation or filtering isto be performed, customized handlers that
receive the records, manipulate them and pass them on to aOTF_Writer object, should be used.

It is possible to do merging in parallel if the input streams are distributed in a disjoint way.

17

4.3 Parallel Reading and Searching

Reading a trace for analysis provides a number of new possibilities with OTF. Of course, classical
linear reading from beginning to end is supported.

First, every analysis application will read definitions - global as well as all local ones. This is supposed
to be done by every process of an parallel/distributed analysis application. All further reading can
take advantage of efficient parallel input. Every analysis process can select only a subset of the trace
processes to read. For best efficiency, this mapping should be aligned to the existing processes to
streams mapping such that every reader process accesses a minimum number of different streams.

Second, it might refer to summary records (provided the trace contains some) in order to find interest-
ing spots for selective access.

Third, the application might decide to read a selected time interval I = t0, t1 only. Then it has to
search for the latest snapshot time stampt∗ < I. This search is performed by OTF via binary search
which is very fast and efficient.

Processing that snapshot enables the analysis applicationto start reading from timet∗ in the event
time stamp. This time stamp inside the event stream is again detected by OTF via binary search. Now,
event by event is delivered by the callback handlers as usual. Multiple select and search operations
can be performed subsequently or in parallel.

5 Conclusion

This document represents the first milestone deliverable ofthe University of California (UC),
Lawrence Livermore National Laboratory (LLNL), subcontract #B548849. The OTF specification
reported here will be updated during the course of the UC/LLNL project as necessary to reflect deci-
sions made in the second and third implementation phases of the project. No substantial changes to
the specification are anticipated.

18

A Global Trace Record Output Handler Interface

Functions

• OTF_Writer ∗ OTF_Writer_open (char∗fileNamePrefix, uint32_t numberOfStreams, OTF_-
FileManager∗fileManager)

• int OTF_Writer_close (OTF_Writer ∗writer)
• int OTF_Writer_closeAllStreams (OTF_Writer ∗writer)
• int OTF_Writer_setCompression (OTF_Writer ∗writer, OTF_FileCompression compres-

sion)
• OTF_FileCompressionOTF_Writer_getCompression (OTF_Writer ∗writer)
• void OTF_Writer_setBufferSizes (OTF_Writer ∗writer, uint32_t size)
• uint32_tOTF_Writer_getBufferSizes (OTF_Writer ∗writer)
• void OTF_Writer_setZBufferSizes (OTF_Writer ∗writer, uint32_t size)
• uint32_tOTF_Writer_getZBufferSizes (OTF_Writer ∗writer)
• void OTF_Writer_setFormat (OTF_Writer ∗writer, uint32_t format)
• uint32_tOTF_Writer_getFormat (OTF_Writer ∗writer)
• uint32_t OTF_Writer_assignProcess (OTF_Writer ∗writer, uint32_t process, uint32_-

t stream)
• OTF_MasterControl∗ OTF_Writer_getMasterControl (OTF_Writer ∗writer)
• void OTF_Writer_setMasterControl (OTF_Writer ∗writer, OTF_MasterControl∗mc)
• int OTF_Writer_writeDefinitionComment (OTF_Writer ∗writer, uint32_t stream, const

char∗comment)
• int OTF_Writer_writeDefTimerResolution (OTF_Writer ∗writer, uint32_t stream, uint64_t

ticksPerSecond)
• int OTF_Writer_writeDefProcess (OTF_Writer ∗writer, uint32_t stream, uint32_t process,

const char∗name, uint32_t parent)
• int OTF_Writer_writeDefProcessGroup (OTF_Writer ∗writer, uint32_t stream, uint32_-

t procGroup, const char∗name, uint32_t numberOfProcs, const uint32_t∗procs)
• int OTF_Writer_writeDefFunction (OTF_Writer ∗writer, uint32_t stream, uint32_t func,

const char∗name, uint32_t funcGroup, uint32_t source)
• int OTF_Writer_writeDefFunctionGroup (OTF_Writer ∗writer, uint32_t stream, uint32_t

funcGroup, const char∗name)
• int OTF_Writer_writeDefCollectiveOperation (OTF_Writer ∗writer, uint32_t stream,

uint32_t collOp, const char∗name, uint32_t type)
• int OTF_Writer_writeDefCounter (OTF_Writer ∗writer, uint32_t stream, uint32_t counter,

const char∗name, uint32_t properties, uint32_t counterGroup, const char∗unit)
• int OTF_Writer_writeDefCounterGroup (OTF_Writer ∗writer, uint32_t stream, uint32_t

counterGroup, const char∗name)
• int OTF_Writer_writeDefScl (OTF_Writer ∗writer, uint32_t stream, uint32_t source,

uint32_t sourceFile, uint32_t line)
• int OTF_Writer_writeDefSclFile (OTF_Writer ∗writer, uint32_t stream, uint32_t sourceFile,

const char∗name)
• int OTF_Writer_writeOtfVersion (OTF_Writer ∗writer, uint32_t stream)

19

• int OTF_Writer_writeDefCreator (OTF_Writer ∗writer, uint32_t stream, const char
∗creator)

• int OTF_Writer_writeEnter (OTF_Writer ∗writer, uint64_t time, uint32_t function, uint32_t
process, uint32_t source)

• int OTF_Writer_writeLeave (OTF_Writer ∗writer, uint64_t time, uint32_t function, uint32_t
process, uint32_t source)

• int OTF_Writer_writeRecvMsg (OTF_Writer ∗writer, uint64_t time, uint32_t receiver,
uint32_t sender, uint32_t procGroup, uint32_t tag, uint32_t length, uint32_t source)

• int OTF_Writer_writeSendMsg (OTF_Writer ∗writer, uint64_t time, uint32_t sender,
uint32_t receiver, uint32_t procGroup, uint32_t tag, uint32_t length, uint32_t source)

• int OTF_Writer_writeCounter (OTF_Writer ∗writer, uint64_t time, uint32_t process,
uint32_t counter, uint64_t value)

• int OTF_Writer_writeCollectiveOperation (OTF_Writer ∗writer, uint64_t time, uint32_-
t process, uint32_t collective, uint32_t procGroup, uint32_t rootProc, uint32_t sent, uint32_t
received, uint64_t duration, uint32_t source)

• int OTF_Writer_writeEventComment (OTF_Writer ∗writer, uint64_t time, uint32_t pro-
cess, const char∗comment)

• int OTF_Writer_writeBeginProcess (OTF_Writer ∗writer, uint64_t time, uint32_t process)
• int OTF_Writer_writeEndProcess (OTF_Writer ∗writer, uint64_t time, uint32_t process)
• int OTF_Writer_writeSnapshotComment (OTF_Writer ∗writer, uint64_t time, uint32_-

t process, const char∗comment)
• int OTF_Writer_writeEnterSnapshot (OTF_Writer ∗writer, uint64_t time, uint64_t orig-

inaltime, uint32_t function, uint32_t process, uint32_t source)
• int OTF_Writer_writeSendSnapshot(OTF_Writer ∗writer, uint64_t time, uint64_t original-

time, uint32_t sender, uint32_t receiver, uint32_t procGroup, uint32_t tag, uint32_t source)
• int OTF_Writer_writeSummaryComment (OTF_Writer ∗writer, uint64_t time, uint32_-

t process, const char∗comment)
• int OTF_Writer_writeFunctionSummary (OTF_Writer ∗writer, uint64_t time, uint32_-

t function, uint32_t process, uint64_t count, uint64_t excltime, uint64_t incltime)
• int OTF_Writer_writeFunctionGroupSummary (OTF_Writer ∗writer, uint64_t time,

uint32_t functiongroup, uint32_t process, uint64_t count, uint64_t excltime, uint64_t incltime)
• int OTF_Writer_writeMessageSummary(OTF_Writer ∗writer, uint64_t time, uint32_t pro-

cess, uint32_t peer, uint32_t comm, uint32_t tag, uint64_tnumber_sent, uint64_t number_-
recved, uint64_t bytes_sent, uint64_t bytes_recved)

A.1 Function Documentation

A.1.1 OTF_Writer ∗ OTF_Writer_open (char ∗ fileNamePrefix, uint32_t numberOfStreams,
OTF_FileManager ∗ fileManager)

Create a new OTF_Writer instance with a given number of automatic streams.

Setting the number of streams to 0 causes the OTF_Writer object to create a separate stream for
each process. Important! Explicit calls toOTF_Writer_assignProcess()(p. 23) can lead to an overall
number of streams which exceeds the initial number of streams in this call. OTF can reduce its file

20

handle usage to a given number. Therefore, an initialized file manager instance is needed as parameter.
See OTF_FileManager for further details.

Parameters:
fileNamePrefix File name prefix which is going to be used by all sub-files whichbelong to the

trace.

numberOfStreamsInitial number of independent data streams to be generated.

fileManager File handle manager.

Returns:
Initialized OTF_Writer instance or 0 if a failure occurred.

A.1.2 int OTF_Writer_close (OTF_Writer ∗ writer)

Close an OTF_Writer instance and all its related files.

Parameters:
writer Pointer to an initialized OTF_Writer object. See alsoOTF_Writer_open()(p. 20).

Returns:
1 if instance was closed successfully and 0 otherwise.

A.1.3 int OTF_Writer_closeAllStreams (OTF_Writer ∗ writer)

Close all streams that are open in this writer instance.

Parameters:
writer Pointer to an initialized OTF_Writer object. See alsoOTF_Writer_open()(p. 20).

Returns:
1 on success, 0 if an error occurs.

A.1.4 int OTF_Writer_setCompression (OTF_Writer ∗ writer, OTF_FileCompression
compression)

Set the standard compression method for all buffers managedby this writer

Parameters:
writer Pointer to an initialized OTF_Writer object. See alsoOTF_Writer_open()(p. 20).

compressioncompression level to apply to all following streams 0-9, where 0 means no com-
pression is applied, and 9 is the highest level of compression.

Returns:
1 on success, 0 if an error occurs.

21

A.1.5 OTF_FileCompression OTF_Writer_getCompression (OTF_Writer ∗ writer)

Return the standard compression method for all buffers managed by this writer

Parameters:
writer Pointer to an initialized OTF_Writer object. See alsoOTF_Writer_open()(p. 20).

Returns:
Standard compression level for all buffers managed by this writer.

A.1.6 void OTF_Writer_setBufferSizes (OTF_Writer ∗ writer, uint32_t size)

Set the default buffer size for all buffers managed by this Writer. This is only effective for future
buffers and will not change already allocated buffers. Those can be changed with the buffers directly.

Parameters:
writer Pointer to an initialized OTF_Writer object. See alsoOTF_Writer_open()(p. 20).

size Intended buffer size.

A.1.7 uint32_t OTF_Writer_getBufferSizes (OTF_Writer ∗ writer)

Get the default buffer size for all buffers managed by this Writer.

Parameters:
writer Pointer to an initialized OTF_Writer object. See alsoOTF_Writer_open()(p. 20).

Returns:
Default buffer size for all buffers managed by this Writer.

A.1.8 void OTF_Writer_setZBufferSizes (OTF_Writer ∗ writer, uint32_t size)

Set the default zbuffer size for all buffers managed by this Reader. This is only effective for future
files and will not change already allocated zbuffers. Those can be changed with the files directly.

Parameters:
writer Pointer to an initialized OTF_Writer object. See alsoOTF_Writer_open()(p. 20).

size Intended zbuffer size.

A.1.9 uint32_t OTF_Writer_getZBufferSizes (OTF_Writer ∗ writer)

Get the default zbuffer size.

Parameters:
writer Pointer to an initialized OTF_Writer object. See alsoOTF_Writer_open()(p. 20).

Returns:
zbuffer size.

22

A.1.10 void OTF_Writer_setFormat (OTF_Writer ∗ writer, uint32_t format)

Set the default ouput format. The format is applied to all streams opened by the writer.

Parameters:
writer Pointer to an initialized OTF_Writer object. See alsoOTF_Writer_open()(p. 20).

format Intended output format (OTF_WSTREAM_FORMAT_{LONG,SHORT}).

A.1.11 uint32_t OTF_Writer_getFormat (OTF_Writer ∗ writer)

Get the default output format of all streams managed by this writer.

Parameters:
writer Pointer to an initialized OTF_Writer object. See alsoOTF_Writer_open()(p. 20).

Returns:
Default output format.

A.1.12 uint32_t OTF_Writer_assignProcess (OTF_Writer∗ writer, uint32_t process, uint32_t
stream)

Explicitly assign a given process to a specific stream.

Mind that 0 is not a valid stream or process identifier but a reserved value. By default, processes are
automatically assigned to streams. Therefore, this call isoptional.

Parameters:
writer Pointer to an initialized OTF_Writer object. See alsoOTF_Writer_open()(p. 20).

processProcess identifier. See alsoOTF_Writer_writeDefProcess()(p. 25).

stream Target stream identifier with 0< stream<= number of streams as defined inOTF_-
Writer_open()(p. 20).

Returns:
1 on success, 0 if an error occurs.

A.1.13 OTF_MasterControl∗ OTF_Writer_getMasterControl (OTF_Writer ∗ writer)

Get a pointer to the master control object of the given writerinstance.

Parameters:
writer Pointer to an initialized OTF_Writer object. See alsoOTF_Writer_open()(p. 20).

Returns:
Pointer to a master control object. See OTF_MasterControl.

23

A.1.14 void OTF_Writer_setMasterControl (OTF_Writer ∗ writer, OTF_MasterControl ∗
mc)

Set an alternative master control object. Use this only right after initialization but never after having
written some records already!

Parameters:
writer Pointer to an initialized OTF_Writer object. See alsoOTF_Writer_open()(p. 20).

mc new master control object

A.1.15 int OTF_Writer_writeDefinitionComment (OTF_Write r ∗ writer, uint32_t stream,
const char∗ comment)

Write a comment record.

Parameters:
writer Initialized OTF_Writer instance.

stream Target stream identifier with 0< stream<= number of streams as defined inOTF_-
Writer_open()(p. 20).

comment Arbitrary comment string.

Returns:
1 on success, 0 if an error occurs.

A.1.16 int OTF_Writer_writeDefTimerResolution (OTF_Wri ter ∗ writer, uint32_t stream,
uint64_t ticksPerSecond)

Write the timer resolution definition record. All timed event records will be interpreted according to
this definition. By default, a timer resultion of 1 us i.e. 1,000,000 clock ticks is assumed.

Parameters:
writer Pointer to an initialized OTF_Writer object. See alsoOTF_Writer_open()(p. 20).

stream Target stream identifier with 0< stream<= number of streams as defined inOTF_-
Writer_open()(p. 20).

ticksPerSecondClock ticks per second of the timer.

Returns:
1 on success, 0 if an error occurs.

24

A.1.17 int OTF_Writer_writeDefProcess (OTF_Writer ∗ writer, uint32_t stream, uint32_t
process, const char∗ name, uint32_t parent)

Write a process definition record.

Parameters:
writer Pointer to an initialized OTF_Writer object. See alsoOTF_Writer_open()(p. 20).

stream Target stream identifier with 0< stream<= number of streams as defined inOTF_-
Writer_open()(p. 20).

processArbitrary but unique process identifier> 0.

name Name of the process e.g. "Process X".

parent Previously declared parent process identifier or 0 if process has no parent.

Returns:
1 on success, 0 if an error occurs.

A.1.18 int OTF_Writer_writeDefProcessGroup (OTF_Writer ∗ writer, uint32_t stream,
uint32_t procGroup, const char∗ name, uint32_t numberOfProcs, const uint32_t∗
procs)

Write a process group definition record.

OTF supports groups of processes. Their main objective is toclassify processes depending on arbitrary
characteristics. Processes can reside in multiple groups.This record type is optional.

Parameters:
writer Pointer to an initialized OTF_Writer object. See alsoOTF_Writer_open()(p. 20).

stream Target stream identifier with 0< stream<= number of streams as defined inOTF_-
Writer_open()(p. 20).

procGroup Arbitrary but unique process group identifier> 0.

name Name of the process group e.g. "Well Balanced".

numberOfProcsThe number of processes in the process group.

procs Vector of process identifiers or previously defined process group identifiers as defined with
OTF_Writer_writeDefProcess()(p. 25) resp. OTF_Writer_writeDefProcessGroup.

Returns:
1 on success, 0 if an error occurs.

A.1.19 int OTF_Writer_writeDefFunction (OTF_Writer ∗ writer, uint32_t stream, uint32_t
func, const char∗ name, uint32_t funcGroup, uint32_t source)

Write a function definition record.

Defines a function of the given name. Functions can optionally belong to a certain function group
to be defined with theOTF_Writer_writeDefFunctionGroup() (p. 26) call. A source code reference
can be added to the definition aswell.

25

Parameters:
writer Pointer to an initialized OTF_Writer object. See alsoOTF_Writer_open()(p. 20).

stream Target stream identifier with 0< stream<= number of streams as defined inOTF_-
Writer_open()(p. 20).

func Arbitrary but unique function identifier> 0.

name Name of the function e.g. "DoSomething".

funcGroup A function group identifier preliminary defined withOTF_Writer_writeDef-
FunctionGroup()(p. 26) or 0 for no function group assignment.

source Reference to the function’s source code location preliminary defined withOTF_Writer_-
writeDefScl()(p. 28) or 0 for no source code location assignment.

Returns:
1 on success, 0 if an error occurs.

A.1.20 int OTF_Writer_writeDefFunctionGroup (OTF_Write r ∗ writer, uint32_t stream,
uint32_t funcGroup, const char∗ name)

Write a function group definition record.

Parameters:
writer Pointer to an initialized OTF_Writer object. See alsoOTF_Writer_open()(p. 20).

stream Target stream identifier with 0< stream<= number of streams as defined inOTF_-
Writer_open()(p. 20).

funcGroup An arbitrary but unique function group identifier> 0.

name Name of the function group e.g. "Computation".

Returns:
1 on success, 0 if an error occurs.

A.1.21 int OTF_Writer_writeDefCollectiveOperation (OTF _Writer ∗ writer, uint32_t stream,
uint32_t collOp, const char∗ name, uint32_t type)

Write a collective operation definition record.

Parameters:
writer Initialized OTF_Writer instance.

stream Target stream identifier with 0< stream<= number of streams as defined inOTF_-
Writer_open()(p. 20).

collOp An arbitrary but unique collective op. identifier> 0.

name Name of the collective operation e.g. "MPI_Bcast".

type One of the five supported collective classes: OTF_COLLECTIVE_TYPE_UNKNOWN
(default), OTF_COLLECTIVE_TYPE_BARRIER, OTF_COLLECTIVE_TYPE_-
ONE2ALL, OTF_COLLECTIVE_TYPE_ALL2ONE, OTF_COLLECTIVE_TYPE_-
ALL2ALL.

Returns:
1 on success, 0 if an error occurs.

26

A.1.22 int OTF_Writer_writeDefCounter (OTF_Writer ∗ writer, uint32_t stream, uint32_t
counter, const char∗ name, uint32_t properties, uint32_t counterGroup, const char∗
unit)

Write a counter definition record.

Parameters:
writer Initialized OTF_Writer instance.

stream Target stream identifier with 0< stream<= number of streams as defined inOTF_-
Writer_open()(p. 20).

counter An arbitrary but unique counter identifier.

name Name of the counter e.g. "Cache Misses".

properties A combination of a type and scope counter property. OTF_COUNTER_TYPE_ACC
(default) represents a counter with monotonously increasing values e.g. a FLOP counter.
OTF_COUNTER_TYPE_ABS on the other hand defines a counter with alternating abso-
lute values e.g. the memory usage of a process. The followingcounter measurement scopes
are supported: OTF_COUNTER_SCOPE_START (default) alwaysrefers to the start of the
process, OTF_COUNTER_SCOPE_POINT refers to exactly this moment in time, OTF_-
COUNTER_SCOPE_LAST relates to the previous measurement, and OTF_COUNTER_-
SCOPE_NEXT to the next measurement. Examples: OTF_COUNTER_TYPE_ACC +
OTF_COUNTER_SCOPE_START should be used for most standard hardware (PAPI)
counters. OTF_COUNTER_TYPE_ABS + OTF_COUNTER_SCOPE_POINT could be
used to record information ’spikes’. OTF_COUNTER_TYPE_ABS + OTF_COUNTER_-
SCOPE_NEXT works for memory allocation recording.

counterGroup A previously defined counter group identifier or 0 for no group.

unit Unit of the counter e.g. "#" for "number of..." or 0 for no unit.

Returns:
1 on success, 0 if an error occurs.

A.1.23 int OTF_Writer_writeDefCounterGroup (OTF_Writer ∗ writer, uint32_t stream,
uint32_t counterGroup, const char∗ name)

Write a counter group definition record.

Parameters:
writer Initialized OTF_Writer instance.

stream Target stream identifier with 0< stream<= number of streams as defined inOTF_-
Writer_open()(p. 20).

counterGroup An arbitrary but unique counter group identifier.

name Counter group name.

Returns:
1 on success, 0 if an error occurs.

27

A.1.24 int OTF_Writer_writeDefScl (OTF_Writer ∗ writer, uint32_t stream, uint32_t source,
uint32_t sourceFile, uint32_t line)

Write a source code location (SCL) record.

Parameters:
writer Initialized OTF_Writer instance.

stream Target stream identifier with 0< stream<= number of streams as defined inOTF_-
Writer_open()(p. 20).

source Arbitrary but unique source code location identifier> 0.

sourceFile Previously defined source file identifier. SeeOTF_Writer_writeDefSclFile() (p. 28).

line Line number.

Returns:
1 on success, 0 if an error occurs.

A.1.25 int OTF_Writer_writeDefSclFile (OTF_Writer ∗ writer, uint32_t stream, uint32_t
sourceFile, const char∗ name)

Write a source code location (SCL) file record.

Parameters:
writer Initialized OTF_Writer instance.

stream Target stream identifier with 0< stream<= number of streams as defined inOTF_-
Writer_open()(p. 20).

sourceFile Arbitrary but unique source code location identifier != 0.

name File name.

Returns:
1 on success, 0 if an error occurs.

A.1.26 int OTF_Writer_writeOtfVersion (OTF_Writer ∗ writer, uint32_t stream)

Write a version record. There are no value parameters because the OTF version is determined by the
currently used library itself.

Parameters:
writer Initialized OTF_Writer instance.

stream Target stream identifier with 0< stream<= number of streams as defined inOTF_-
Writer_open()(p. 20).

Returns:
1 on success, 0 if an error occurs.

28

A.1.27 int OTF_Writer_writeDefCreator (OTF_Writer ∗ writer, uint32_t stream, const char∗
creator)

Write a creator record.

Parameters:
writer Initialized OTF_Writer instance.

stream Target stream identifier with 0< stream<= number of streams as defined inOTF_-
Writer_open()(p. 20).

creator String which identifies the creator of the file e.g. "TAU Version x.y.z".

Returns:
1 on success, 0 if an error occurs.

A.1.28 int OTF_Writer_writeEnter (OTF_Writer ∗ writer, uint64_t time, uint32_t function,
uint32_t process, uint32_t source)

Write a function entry record.

Parameters:
writer Initialized OTF_Writer instance.

time The time when the function entry took place.

function Function to be entered as defined with OTF_Writer_defFunction.

processProcess where action took place.

source Optional reference to source code.

Returns:
1 on success, 0 if an error occurs.

A.1.29 int OTF_Writer_writeLeave (OTF_Writer ∗ writer, uint64_t time, uint32_t function,
uint32_t process, uint32_t source)

Write a function leave record.

Parameters:
writer Initialized OTF_Writer instance.

time The time when the function leave took place.

function Function which was left or 0 if stack integrety checking is not needed.

processProcess where action took place.

source Explicit source code location or 0.

Returns:
1 on success, 0 if an error occurs.

29

A.1.30 int OTF_Writer_writeRecvMsg (OTF_Writer ∗ writer, uint64_t time, uint32_t
receiver, uint32_t sender, uint32_t procGroup, uint32_t tag, uint32_t length, uint32_t
source)

Write a message retrieval record.

Parameters:
writer Initialized OTF_Writer instance.

time The time when the message was received.

receiver Identifier of receiving process.

sender Identifier of sending process.

procGroup Optional process-group sender and receiver belong to, ’0’ for no group.

tag Optional message type information.

length Optional message length information.

source Optional reference to source code.

Returns:
1 on success, 0 if an error occurs.

A.1.31 int OTF_Writer_writeSendMsg (OTF_Writer ∗ writer, uint64_t time, uint32_t sender,
uint32_t receiver, uint32_t procGroup, uint32_t tag, uint32_t length, uint32_t source)

Write a message send record.

Parameters:
writer Initialized OTF_Writer instance.

time The time when the message was send.

sender Sender of the message.

receiver Receiver of the message.

procGroup Optional process-group sender and receiver belong to, ’0’ for no group.

tag Optional message type information.

length Optional message length information.

source Optional reference to source code.

Returns:
1 on success, 0 if an error occurs.

30

A.1.32 int OTF_Writer_writeCounter (OTF_Writer ∗ writer, uint64_t time, uint32_t process,
uint32_t counter, uint64_t value)

Write a counter measurement record.

Parameters:
writer Initialized OTF_Writer instance.

time Time when counter was measured.

processProcess where counter measurment took place.

counter Counter which was measured.

value Counter value.

Returns:
1 on success, 0 if an error occurs.

A.1.33 int OTF_Writer_writeCollectiveOperation (OTF_Wr iter ∗ writer, uint64_t time,
uint32_t process, uint32_t collective, uint32_t procGroup, uint32_t rootProc, uint32_t
sent, uint32_t received, uint64_t duration, uint32_t source)

Write a collective operation member record.

Parameters:
writer Initialized OTF_Writer instance.

time Time when collective operation was entered by member.

processProcess identifier i.e. collective member.

collective Collective identifier to be defined withOTF_Writer_writeDefCollective-
Operation()(p. 26).

procGroup Group of processes participating in this collective.

rootProc Root process if != 0.

sent Data volume sent by member or 0.

receivedData volumd received by member or 0.

duration Time spent in collective operation.

source Explicit source code location or 0.

Returns:
1 on success, 0 if an error occurs.

A.1.34 int OTF_Writer_writeEventComment (OTF_Writer ∗ writer, uint64_t time, uint32_t
process, const char∗ comment)

Write a comment record.

31

Parameters:
writer Initialized OTF_Writer instance.

time Comments need a timestamp for a proper positioning in the trace.

processComments also need a process identifier for a proper positioning in the trace.

comment Arbitrary comment string.

Returns:
1 on success, 0 if an error occurs.

A.1.35 int OTF_Writer_writeBeginProcess (OTF_Writer ∗ writer, uint64_t time, uint32_t
process)

Write a begin process record

Parameters:
writer Initialized OTF_Writer instance.

time Time when process was referenced for the first time.

processProcess identifier> 0.

Returns:
1 on success, 0 if an error occurs.

A.1.36 int OTF_Writer_writeEndProcess (OTF_Writer ∗ writer, uint64_t time, uint32_t
process)

Write a end process record

Parameters:
writer Initialized OTF_Writer instance.

time Time when process was referenced for the last time.

processProcess identifier> 0.

Returns:
1 on success, 0 if an error occurs.

A.1.37 int OTF_Writer_writeSnapshotComment (OTF_Writer ∗ writer, uint64_t time,
uint32_t process, const char∗ comment)

Write a snapshot comment record.

Parameters:
writer Initialized OTF_Writer instance.

time Comments need a timestamp for a proper positioning in the trace.

processComments also need a process identifier for a proper positioning in the trace.

comment Arbitrary comment string.

Returns:
1 on success, 0 if an error occurs.

32

A.1.38 int OTF_Writer_writeEnterSnapshot (OTF_Writer ∗ writer, uint64_t time, uint64_t
originaltime, uint32_t function, uint32_t process, uint32_t source)

Write an enter snapshot which provides information about a past function call

Parameters:
writer Initialized OTF_Writer instance.

time Time when the snapshot was written(current time).

originaltime Time when the according enter record was entered. This call is still on the stack.(It
has not been left yet)

function Function that the has been entered OTF_Writer_defFunction.

processProcess where action took place.

source Optional reference to source code.

Returns:
1 on success, 0 if an error occurs.

A.1.39 int OTF_Writer_writeSendSnapshot (OTF_Writer ∗ writer, uint64_t time, uint64_t
originaltime, uint32_t sender, uint32_t receiver, uint32_t procGroup, uint32_t tag,
uint32_t source)

Write a send snapshot which provides information about a past message send operation that is still
pending, i.e. not yet received

Parameters:
writer Initialized OTF_Writer instance.

time Time when the snapshot was written(current time).

originaltime Time when the message was sent

sender Sender of the message.

receiver Receiver of the message.

procGroup Optional process-group sender and receiver belong to, ’0’ for no group.

tag Optional message type information.

source Optional reference to source code.

Returns:
1 on success, 0 if an error occurs.

A.1.40 int OTF_Writer_writeSummaryComment (OTF_Writer ∗ writer, uint64_t time,
uint32_t process, const char∗ comment)

Write a summary comment record.

33

Parameters:
writer Initialized OTF_Writer instance.

time Comments need a timestamp for a proper positioning in the trace.

processComments also need a process identifier for a proper positioning in the trace.

comment Arbitrary comment string.

Returns:
1 on success, 0 if an error occurs.

A.1.41 int OTF_Writer_writeFunctionSummary (OTF_Writer ∗ writer, uint64_t time,
uint32_t function, uint32_t process, uint64_t count, uint64_t excltime, uint64_t
incltime)

Write a function summary record.

Parameters:
writer Initialized OTF_Writer instance.

time Time when summary was computed.

function Function as defined with OTF_Handler_DefFunction.

processProcess of the given function.

count Number of invocations.

excltime Time spent exclusively in the given function.

incltime Time spent in the given function including all sub-routine calls.

Returns:
1 on success, 0 if an error occurs.

A.1.42 int OTF_Writer_writeFunctionGroupSummary (OTF_W riter ∗ writer, uint64_t time,
uint32_t functiongroup, uint32_t process, uint64_t count, uint64_t excltime, uint64_t
incltime)

Write a functiongroup summary record.

Parameters:
writer Initialized OTF_Writer instance.

time Time when summary was computed.

functiongroup Function group as defined with OTF_Handler_DefFunctionGroup.

processProcess of the given function group.

count Number of invocations.

excltime Time spent exclusively in the given function group.

incltime Time spent in the given function group including all sub-routine calls.

Returns:
1 on success, 0 if an error occurs.

34

A.1.43 int OTF_Writer_writeMessageSummary (OTF_Writer ∗ writer, uint64_t time,
uint32_t process, uint32_t peer, uint32_t comm, uint32_t tag, uint64_t number_sent,
uint64_t number_recved, uint64_t bytes_sent, uint64_t bytes_recved)

Write a message summary record.

Parameters:
writer Initialized OTF_Writer instance.

time Time when summary was computed.

processProcess where messages originated.

peer Process where the message is sent to

comm Communicator of message summary

tag Message type/tag.

number_sentThe number of messages sent.

number_recvedThe number of messages received.

bytes_sentThe number of bytes sent via messages of the given type.

bytes_recvedThe number of bytes received through messages of the given type.

Returns:
1 on success, 0 if an error occurs.

35

B Global Trace Record Input Handler Interface

Functions

• int OTF_Handler_DefinitionComment (void ∗userData, uint32_t stream, const char
∗comment)

• int OTF_Handler_DefTimerResolution (void ∗userData, uint32_t stream, uint64_t ticksPer-
Second)

• int OTF_Handler_DefProcess(void ∗userData, uint32_t stream, uint32_t process, const char
∗name, uint32_t parent)

• int OTF_Handler_DefProcessGroup(void ∗userData, uint32_t stream, uint32_t procGroup,
const char∗name, uint32_t numberOfProcs, const uint32_t∗procs)

• int OTF_Handler_DefFunction (void ∗userData, uint32_t stream, uint32_t func, const char
∗name, uint32_t funcGroup, uint32_t source)

• int OTF_Handler_DefFunctionGroup (void ∗userData, uint32_t stream, uint32_t funcGroup,
const char∗name)

• int OTF_Handler_DefCollectiveOperation (void ∗userData, uint32_t stream, uint32_t coll-
Op, const char∗name, uint32_t type)

• int OTF_Handler_DefCounter (void ∗userData, uint32_t stream, uint32_t counter, const char
∗name, uint32_t properties, uint32_t counterGroup, const char∗unit)

• int OTF_Handler_DefCounterGroup (void ∗userData, uint32_t stream, uint32_t counter-
Group, const char∗name)

• int OTF_Handler_DefScl (void ∗userData, uint32_t stream, uint32_t source, uint32_t source-
File, uint32_t line)

• int OTF_Handler_DefSclFile (void ∗userData, uint32_t stream, uint32_t sourceFile, const
char∗name)

• int OTF_Handler_DefCreator (void ∗userData, uint32_t stream, const char∗creator)
• int OTF_Handler_Enter (void ∗userData, uint64_t time, uint32_t function, uint32_t process,

uint32_t source)
• int OTF_Handler_Leave (void ∗userData, uint64_t time, uint32_t function, uint32_t process,

uint32_t source)
• int OTF_Handler_SendMsg (void ∗userData, uint64_t time, uint32_t sender, uint32_t re-

ceiver, uint32_t group, uint32_t type, uint32_t length, uint32_t source)
• int OTF_Handler_RecvMsg(void ∗userData, uint64_t time, uint32_t recvProc, uint32_t send-

Proc, uint32_t group, uint32_t type, uint32_t length, uint32_t source)
• int OTF_Handler_Counter (void ∗userData, uint64_t time, uint32_t process, uint32_t counter,

uint64_t value)
• int OTF_Handler_CollectiveOperation (void ∗userData, uint64_t time, uint32_t process,

uint32_t collective, uint32_t procGroup, uint32_t rootProc, uint32_t sent, uint32_t received,
uint64_t duration, uint32_t source)

• int OTF_Handler_EventComment (void ∗userData, uint64_t time, uint32_t process, const
char∗comment)

• int OTF_Handler_BeginProcess(void ∗userData, uint64_t time, uint32_t process)
• int OTF_Handler_EndProcess(void ∗userData, uint64_t time, uint32_t process)

36

• int OTF_Handler_SnapshotComment(void ∗userData, uint64_t time, uint32_t process, const
char∗comment)

• int OTF_Handler_EnterSnapshot (void ∗userData, uint64_t time, uint64_t originaltime,
uint32_t function, uint32_t process, uint32_t source)

• int OTF_Handler_SendSnapshot(void ∗userData, uint64_t time, uint64_t originaltime,
uint32_t sender, uint32_t receiver, uint32_t procGroup, uint32_t tag, uint32_t source)

• int OTF_Handler_SummaryComment (void ∗userData, uint64_t time, uint32_t process,
const char∗comment)

• int OTF_Handler_FunctionSummary (void ∗userData, uint64_t time, uint32_t function,
uint32_t process, uint64_t invocations, uint64_t exclTime, uint64_t inclTime)

• int OTF_Handler_FunctionGroupSummary (void ∗userData, uint64_t time, uint32_t func-
Group, uint32_t process, uint64_t invocations, uint64_t exclTime, uint64_t inclTime)

• int OTF_Handler_MessageSummary(void ∗userData, uint64_t time, uint32_t process,
uint32_t peer, uint32_t comm, uint32_t type, uint64_t sentNumber, uint64_t receivedNumber,
uint64_t sentBytes, uint64_t receivedBytes)

• int OTF_Handler_UnknownRecord (void ∗userData, uint64_t time, uint32_t process, const
char∗record)

B.1 Detailed Description

In the following, the handler interfaces for all record types are specified. The signature of callback
handler functions is equal to the signature of corresponding record write functions except for the
first argument. The first argument common to all callback handler functions isuserData– a generic
pointer to custom user data. The second common argument to all callback hander functions isstream
which identifies the stream where the definition occurred. A stream parameter = 0 indicates a global
definition which is the default.

B.2 Function Documentation

B.2.1 int OTF_Handler_DefinitionComment (void ∗ userData, uint32_t stream, const char∗
comment)

Provides a comment record.

Parameters:
userData Pointer to user data which can be set withOTF_HandlerArray_setFirstHandler-

Arg() (p.??).

stream Identifies the stream to which this definition belongs to. stream = 0 represents a global
definition.

comment Arbitrary comment string.

Returns:
OTF_RETURN_ABORT for aborting the reading process immediately OTF_RETURN_OK for
continue reading

37

B.2.2 int OTF_Handler_DefTimerResolution (void∗ userData, uint32_t stream, uint64_t
ticksPerSecond)

Provides the timer resolution. All timed event records needto be interpreted according to this defini-
tion. By default, a timer resolution of 1 us i.e. 1,000,000 clock ticks is assumed.

Parameters:
userData Pointer to user data which can be set withOTF_HandlerArray_setFirstHandler-

Arg() (p.??).

stream Identifies the stream to which this definition belongs to. stream = 0 represents a global
definition.

ticksPerSecondClock ticks per second of the timer.

Returns:
OTF_RETURN_ABORT for aborting the reading process immediately OTF_RETURN_OK for
continue reading

B.2.3 int OTF_Handler_DefProcess (void∗ userData, uint32_t stream, uint32_t process, const
char ∗ name, uint32_t parent)

Provides a process definition.

Parameters:
userData Pointer to user data which can be set withOTF_HandlerArray_setFirstHandler-

Arg() (p.??).

stream Identifies the stream to which this definition belongs to. stream = 0 represents a global
definition.

processArbitrary but unique process identifier> 0.

name Name of the process e.g. "Process X".

parent Previously declared parent process identifier or 0 if process has no parent.

Returns:
OTF_RETURN_ABORT for aborting the reading process immediately OTF_RETURN_OK for
continue reading

B.2.4 int OTF_Handler_DefProcessGroup (void∗ userData, uint32_t stream, uint32_t
procGroup, const char∗ name, uint32_t numberOfProcs, const uint32_t∗ procs)

Provides a process group definition.

OTF supports groups of processes. Their main objective is toclassify processes depending on arbitrary
characteristics. Processes can reside in multiple groups.This record type is optional.

Parameters:
userData Pointer to user data which can be set withOTF_HandlerArray_setFirstHandler-

Arg() (p.??).

38

stream Identifies the stream to which this definition belongs to. stream = 0 represents a global
definition.

procGroup Arbitrary but unique process group identifier> 0.

name Name of the process group e.g. "Well Balanced".

numberOfProcsThe number of processes in the process group.

procs Vector of process identifiers as provided byOTF_Handler_DefProcess()(p. 38).

Returns:
OTF_RETURN_ABORT for aborting the reading process immediately OTF_RETURN_OK for
continue reading

B.2.5 int OTF_Handler_DefFunction (void ∗ userData, uint32_t stream, uint32_t func, const
char ∗ name, uint32_t funcGroup, uint32_t source)

Provides a function definition.

Defines a function of the given name. Functions can optionally belong to a certain function group
provided by theOTF_Handler_DefFunctionGroup()(p. 39) handler. A source code reference can
be provided aswell.

Parameters:
userData Pointer to user data which can be set withOTF_HandlerArray_setFirstHandler-

Arg() (p.??).

stream Identifies the stream to which this definition belongs to. stream = 0 represents a global
definition.

func Arbitrary but unique function identifier> 0.

name Name of the function e.g. "DoSomething".

funcGroup A function group identifier preliminary provided byOTF_Handler_DefFunction-
Group()(p. 39) or 0 for no function group assignment.

source Reference to the function’s source code location preliminary provided by OTF_-
Handler_DefScl()(p. 41) or 0 for no source code location assignment.

Returns:
OTF_RETURN_ABORT for aborting the reading process immediately OTF_RETURN_OK for
continue reading

B.2.6 int OTF_Handler_DefFunctionGroup (void ∗ userData, uint32_t stream, uint32_t
funcGroup, const char∗ name)

Provides a function group definition.

Parameters:
userData Pointer to user data which can be set withOTF_HandlerArray_setFirstHandler-

Arg() (p.??).

39

stream Identifies the stream to which this definition belongs to. stream = 0 represents a global
definition.

funcGroup An arbitrary but unique function group identifier> 0.

name Name of the function group e.g. "Computation".

Returns:
OTF_RETURN_ABORT for aborting the reading process immediately OTF_RETURN_OK for
continue reading

B.2.7 int OTF_Handler_DefCollectiveOperation (void∗ userData, uint32_t stream, uint32_t
collOp, const char∗ name, uint32_t type)

Provides a collective operation definition.

Parameters:
userData Pointer to user data which can be set withOTF_HandlerArray_setFirstHandler-

Arg() (p.??).

stream Identifies the stream to which this definition belongs to. stream = 0 represents a global
definition.

collOp An arbitrary but unique collective op. identifier> 0.

name Name of the collective operation e.g. "MPI_Bcast".

type One of the five supported collective classes: OTF_COLLECTIVE_TYPE_UNKNOWN
(default), OTF_COLLECTIVE_TYPE_BARRIER, OTF_COLLECTIVE_TYPE_-
ONE2ALL, OTF_COLLECTIVE_TYPE_ALL2ONE, OTF_COLLECTIVE_TYPE_-
ALL2ALL.

Returns:
OTF_RETURN_ABORT for aborting the reading process immediately OTF_RETURN_OK for
continue reading

B.2.8 int OTF_Handler_DefCounter (void ∗ userData, uint32_t stream, uint32_t counter,
const char∗ name, uint32_t properties, uint32_t counterGroup, const char∗ unit)

Provides a counter definition.

Parameters:
userData Pointer to user data which can be set withOTF_HandlerArray_setFirstHandler-

Arg() (p.??).

stream Identifies the stream to which this definition belongs to. stream = 0 represents a global
definition.

counter An arbitrary but unique counter identifier.

name Name of the counter e.g. "Cache Misses".

40

properties A combination of a type and scope counter property. OTF_COUNTER_TYPE_ACC
(default) represents a counter with monotonously increasing values e.g. a FLOP counter.
OTF_COUNTER_TYPE_ABS on the other hand defines a counter with alternating abso-
lute values e.g. the memory usage of a process. The followingcounter measurement scopes
are supported: OTF_COUNTER_SCOPE_START (default) alwaysrefers to the start of the
process, OTF_COUNTER_SCOPE_POINT refers to exactly this moment in time, OTF_-
COUNTER_SCOPE_LAST relates to the previous measurement, and OTF_COUNTER_-
SCOPE_NEXT to the next measurement. Examples: OTF_COUNTER_TYPE_ACC +
OTF_COUNTER_SCOPE_START should be used for most standard hardware (PAPI)
counters. OTF_COUNTER_TYPE_ABS + OTF_COUNTER_SCOPE_POINT could be
used to record information ’spikes’. OTF_COUNTER_TYPE_ABS + OTF_COUNTER_-
SCOPE_NEXT works for memory allocation recording.

counterGroup A previously defined counter group identifier or 0 for no group.

unit Unit of the counter e.g. "#" for "number of..." or 0 for no unit.

Returns:
OTF_RETURN_ABORT for aborting the reading process immediately OTF_RETURN_OK for
continue reading

B.2.9 int OTF_Handler_DefCounterGroup (void ∗ userData, uint32_t stream, uint32_t
counterGroup, const char∗ name)

Provides a counter group definition.

Parameters:
userData Pointer to user data which can be set withOTF_HandlerArray_setFirstHandler-

Arg() (p.??).

stream Identifies the stream to which this definition belongs to. stream = 0 represents a global
definition.

counterGroup An arbitrary but unique counter group identifier> 0.

name Counter group name.

Returns:
OTF_RETURN_ABORT for aborting the reading process immediately OTF_RETURN_OK for
continue reading

B.2.10 int OTF_Handler_DefScl (void∗ userData, uint32_t stream, uint32_t source, uint32_t
sourceFile, uint32_t line)

Provides a source code location (SCL).

Parameters:
userData Pointer to user data which can be set withOTF_HandlerArray_setFirstHandler-

Arg() (p.??).

41

stream Identifies the stream to which this definition belongs to. stream = 0 represents a global
definition.

source Arbitrary but unique source code location identifier> 0.

sourceFile Previously defined source file identifier. See OTW_Handler_DefSclFile().

line Line number.

Returns:
OTF_RETURN_ABORT for aborting the reading process immediately OTF_RETURN_OK for
continue reading

B.2.11 int OTF_Handler_DefSclFile (void∗ userData, uint32_t stream, uint32_t sourceFile,
const char∗ name)

Provides a source code location (SCL) file.

Parameters:
userData Pointer to user data which can be set withOTF_HandlerArray_setFirstHandler-

Arg() (p.??).

stream Identifies the stream to which this definition belongs to. stream = 0 represents a global
definition.

sourceFile Arbitrary but unique source code location identifier != 0.

name File name.

Returns:
OTF_RETURN_ABORT for aborting the reading process immediately OTF_RETURN_OK for
continue reading

B.2.12 int OTF_Handler_DefCreator (void∗ userData, uint32_t stream, const char∗ creator)

Provides file creator information.

Parameters:
userData Pointer to user data which can be set withOTF_HandlerArray_setFirstHandler-

Arg() (p.??).

stream Identifies the stream to which this definition belongs to. stream = 0 represents a global
definition.

creator String which identifies the creator of the file e.g. "TAU Version x.y.z".

Returns:
OTF_RETURN_ABORT for aborting the reading process immediately OTF_RETURN_OK for
continue reading

42

B.2.13 int OTF_Handler_Enter (void ∗ userData, uint64_t time, uint32_t function, uint32_t
process, uint32_t source)

Provides a function entry event.

Parameters:
userData Pointer to user data which can be set withOTF_HandlerArray_setFirstHandler-

Arg() (p.??).

time The time when the function entry took place.

function Function which has been entered as defined with OTF_Writer_defFunction.

processProcess where action took place.

source Explicit source code location identifier> 0 or 0 if no source information available.

Returns:
OTF_RETURN_ABORT for aborting the reading process immediately OTF_RETURN_OK for
continue reading

B.2.14 int OTF_Handler_Leave (void∗ userData, uint64_t time, uint32_t function, uint32_t
process, uint32_t source)

Provides a function leave event.

Parameters:
userData Pointer to user data which can be set withOTF_HandlerArray_setFirstHandler-

Arg() (p.??).

time The time when the function leave took place.

function Function which was left or 0 if stack integrety checking is not available.

processProcess where action took place.

source Explicit source code location identifier> 0 or 0 if no source information available.

Returns:
OTF_RETURN_ABORT for aborting the reading process immediately OTF_RETURN_OK for
continue reading

B.2.15 int OTF_Handler_SendMsg (void∗ userData, uint64_t time, uint32_t sender, uint32_t
receiver, uint32_t group, uint32_t type, uint32_t length, uint32_t source)

Provides a message send event.

Parameters:
userData Pointer to user data which can be set withOTF_HandlerArray_setFirstHandler-

Arg() (p.??).

time The time when the message was send.

43

sender Sender of the message.

receiver Receiver of the message.

group Process-group to which sender and receiver belong to or 0 forno group assignment.

type Message type information> 0 or 0 for no information.

length Optional message length information.

source Explicit source code location identifier> 0 or 0 if no source information available.

Returns:
OTF_RETURN_ABORT for aborting the reading process immediately OTF_RETURN_OK for
continue reading

B.2.16 int OTF_Handler_RecvMsg (void∗ userData, uint64_t time, uint32_t recvProc,
uint32_t sendProc, uint32_t group, uint32_t type, uint32_t length, uint32_t source)

Provides a message retrieval event.

Parameters:
userData Pointer to user data which can be set withOTF_HandlerArray_setFirstHandler-

Arg() (p.??).

time The time when the message was received.

recvProc Identifier of receiving process.

sendProc Identifier of sending process.

group Process-group to which sender and receiver belong to or 0 forno group assignment.

type Message type information> 0 or 0 for no information.

length Optional message length information.

source Explicit source code location identifier> 0 or 0 if no source information available.

Returns:
OTF_RETURN_ABORT for aborting the reading process immediately OTF_RETURN_OK for
continue reading

B.2.17 int OTF_Handler_Counter (void ∗ userData, uint64_t time, uint32_t process, uint32_t
counter, uint64_t value)

Provides a counter measurement.

Parameters:
userData Pointer to user data which can be set withOTF_HandlerArray_setFirstHandler-

Arg() (p.??).

time Time when counter was measured.

processProcess where counter measurment took place.

44

counter Counter which was measured.

value Counter value.

Returns:
OTF_RETURN_ABORT for aborting the reading process immediately OTF_RETURN_OK for
continue reading

B.2.18 int OTF_Handler_CollectiveOperation (void∗ userData, uint64_t time, uint32_t
process, uint32_t collective, uint32_t procGroup, uint32_t rootProc, uint32_t sent,
uint32_t received, uint64_t duration, uint32_t source)

Provides a collective operation member event.

Parameters:
userData Pointer to user data which can be set withOTF_HandlerArray_setFirstHandler-

Arg() (p.??).

time Time when collective operation was entered by member.

processProcess identifier i.e. collective member.

collective Collective identifier as defined with OTF_Handler_eDefCollectiveOperation().

procGroup Group of processes participating in this collective.

rootProc Root process if != 0.

sent Data volume sent by member or 0.

receivedData volume received by member or 0.

duration Time spent in collective operation.

source Explicit source code location or 0.

Returns:
OTF_RETURN_ABORT for aborting the reading process immediately OTF_RETURN_OK for
continue reading

B.2.19 int OTF_Handler_EventComment (void∗ userData, uint64_t time, uint32_t process,
const char∗ comment)

Provide a comment record.

Parameters:
userData Pointer to user data which can be set withOTF_HandlerArray_setFirstHandler-

Arg() (p.??).

time Comments need a timestamp for a proper positioning in the trace.

processComments also need a process identifier for a proper positioning in the trace.

comment Arbitrary comment string.

Returns:
OTF_RETURN_ABORT for aborting the reading process immediately OTF_RETURN_OK for
continue reading

45

B.2.20 int OTF_Handler_BeginProcess (void∗ userData, uint64_t time, uint32_t process)

Provides a process creation event.

Marks the explicit begin of a process. This event precedes the very first event of the respective process
and should carry the same time stamp. This is especially useful with on-line analysis. It tells whether
there will be additional records for the given process or not. Without this record type, it could only
be guessed that there might not follow more events after a process has reached the bottom of the call
stack.

Parameters:
userData Pointer to user data which can be set withOTF_HandlerArray_setFirstHandler-

Arg() (p.??).

time Time when process was referenced for the first time.

processProcess identifier> 0.

Returns:
OTF_RETURN_ABORT for aborting the reading process immediately OTF_RETURN_OK for
continue reading

B.2.21 int OTF_Handler_EndProcess (void∗ userData, uint64_t time, uint32_t process)

Provides a process destruction event.

Parameters:
userData Pointer to user data which can be set withOTF_HandlerArray_setFirstHandler-

Arg() (p.??).

time Time when process is referenced for the last time. Process identifiers must not be recycled!

processProcess identifier> 0.

Returns:
OTF_RETURN_ABORT for aborting the reading process immediately OTF_RETURN_OK for
continue reading

B.2.22 int OTF_Handler_SnapshotComment (void∗ userData, uint64_t time, uint32_t
process, const char∗ comment)

Provides a snapshot comment.

Parameters:
userData Pointer to user data which can be set withOTF_HandlerArray_setFirstHandler-

Arg() (p.??).

time Comments need a timestamp for a proper positioning in the trace.

processComments also need a process identifier for a proper positioning in the trace.

comment Arbitrary comment string.

Returns:
OTF_RETURN_ABORT for aborting the reading process immediately OTF_RETURN_OK for
continue reading

46

B.2.23 int OTF_Handler_EnterSnapshot (void∗ userData, uint64_t time, uint64_t
originaltime, uint32_t function, uint32_t process, uint32_t source)

provides information about a past function call at the time ’originaltime’. Parameters ’time’,
’function’, ’process’ ,’source’ and the return value have the same meaning as inOTF_Handler_-
Enter()(p. 43).

B.2.24 int OTF_Handler_SendSnapshot (void∗ userData, uint64_t time, uint64_t originaltime,
uint32_t sender, uint32_t receiver, uint32_t procGroup, uint32_t tag, uint32_t source)

provides information about a past message send operation atthe time ’originaltime’. Parameters
’time’, ’sender’, ’receiver’, ’procGroup’, ’tag’, ’source’ and the return value have the same meaning
as inOTF_Handler_SendMsg()(p. 43).

B.2.25 int OTF_Handler_SummaryComment (void∗ userData, uint64_t time, uint32_t
process, const char∗ comment)

Provides a summary comment.

Parameters:
userData Pointer to user data which can be set withOTF_HandlerArray_setFirstHandler-

Arg() (p.??).

time Comments need a timestamp for a proper positioning in the trace.

processComments also need a process identifier for a proper positioning in the trace.

comment Arbitrary comment string.

Returns:
OTF_RETURN_ABORT for aborting the reading process immediately OTF_RETURN_OK for
continue reading

B.2.26 int OTF_Handler_FunctionSummary (void∗ userData, uint64_t time, uint32_t
function, uint32_t process, uint64_t invocations, uint64_t exclTime, uint64_t inclTime)

Provides summarized information for a given function.

Parameters:
userData Pointer to user data which can be set withOTF_HandlerArray_setFirstHandler-

Arg() (p.??).

time Time when summary was computed.

function Function as defined with OTF_Handler_DefFunction.

processProcess of the given function.

invocations Number of invocations.

exclTime Time spent exclusively in the given function.

47

inclTime Time spent in the given function including all sub-routine calls.

Returns:
OTF_RETURN_ABORT for aborting the reading process immediately OTF_RETURN_OK for
continue reading

B.2.27 int OTF_Handler_FunctionGroupSummary (void ∗ userData, uint64_t time, uint32_t
funcGroup, uint32_t process, uint64_t invocations, uint64_t exclTime, uint64_t
inclTime)

Provides summarized information for a given group of functiongroups.

Parameters:
userData Pointer to user data which can be set withOTF_HandlerArray_setFirstHandler-

Arg() (p.??).

time Time when summary was computed.

funcGroup Function group as defined with OTF_Handler_DefFunctionGroup.

processProcess of the given function group.

invocations Number of invocations.

exclTime Time spent exclusively in the given function group.

inclTime Time spent in the given function group including all sub-routine calls.

Returns:
OTF_RETURN_ABORT for aborting the reading process immediately OTF_RETURN_OK for
continue reading

B.2.28 int OTF_Handler_MessageSummary (void∗ userData, uint64_t time, uint32_t
process, uint32_t peer, uint32_t comm, uint32_t type, uint64_t sentNumber, uint64_t
receivedNumber, uint64_t sentBytes, uint64_t receivedBytes)

Provides summarized information for a given message type.

Parameters:
userData Pointer to user data which can be set withOTF_HandlerArray_setFirstHandler-

Arg() (p.??).

time Time when summary was computed.

processProcess where messages originated.

peer Process where the message is sent to

comm Communicator of message summary

type Message type/tag.

sentNumberThe number of messages sent.

receivedNumberThe number of messages received.

48

sentBytesThe number of bytes sent via messages of the given type.

receivedBytesThe number of bytes received through messages of the given type.

Returns:
OTF_RETURN_ABORT for aborting the reading process immediately OTF_RETURN_OK for
continue reading

B.2.29 int OTF_Handler_UnknownRecord (void∗ userData, uint64_t time, uint32_t process,
const char∗ record)

Can be used to handle records which cannot be read.

Parameters:
userData Pointer to user data which can be set withOTF_HandlerArray_setFirstHandler-

Arg() (p.??).

time Time when summary was computed.

processIf ’time’ equals (uin64_t) -1, the unknown record is a definiton record and ’process’ rep-
resents the streamid of the record. If ’time’ has a valid value (not (uint64)-1) the unknown
record is an event-, statistics- or snapshotrecord and ’process’ represents the processid of
the record.

record string which contains the record.

Returns:
OTF_RETURN_ABORT for aborting the reading process immediately OTF_RETURN_OK for
continue reading

49

C Changelog

1.0.x
- initial version

1.1.1
- OTF_Reader now considers the return values of the handlers
- added OTF_VERBOSE, OTF_DEBUG macro for error treatment
- introduced ’UnknownRecord’ handler which allows to catch
unknown record types

1.1.2
- inverted return value of call-back handlers:

’0’ is non-error, ’!= 0’ is regarded as an error, now!
(this makes OTF conform with the VTF3 scheme.)

1.1.3
- fixed a minor bug in otfaux

1.1.4
- fixed a bug in OTF_Reader which might have caused the very first
time stamp of a trace to be not properly sorted
- introduced ’--snapshots’ and ’--statistics’ switches to do only
snapshots or statistics. for statistics a selective mode is allowed
which regards only some streams. By this means statistics can be created
in parallel by calling otfaux multiple times.

1.1.5
- have UnknownRecord report handle incomplete records or additional bytes at
the end of a file.

1.2.0
- introduce transparent zlib compression

1.2.1
- added progress functions using read bytes instead of timestamps

1.2.2
- important bugfix: definitionstream 0 was ignored since version 1.2.0

1.2.3
- bugfix: provided copy handlers returned wrong value

1.2.4
- bugfix: zlib compression bug, wrong sanity check fixed

50

1.2.5
- bugfix: correctly handle process groups with more than 1000 entries

1.2.6
- support shared libraries
1.2.7
- added progress functions to OTF_RStream
- added a progress counter to otfmerge
1.2.8
- allow suffix ’.dylib’ for zlib library file (from Mac OS X)
- removed configure warning

1.2.9
- changeable zlevel
- changeable zbuffersize

1.2.10
- bugfix: otfmerge does no longer accept traces with local streams

1.2.11
- changed OTF_RETURN*(0=success, !0 = error)
- added these macros to all internal functions and tools for better
consistency

- fixed various memoryleaks in otf and otfmerge
- added otfconfig to tools. otfconfig shows installationparameters
important for developers

- updated documentation

1.2.12
- removed intel compiler warnings in otfmerge
- removed debug output
- fixed 64bit issue

1.2.13
- removed intel compiler warnings
- changed OTF_FILETYPE_*-macros
- fixed issues with OTF_getFilename()

1.2.14
- do not linke with ’-lz’ if ’--with-zlibsymbols’ was specified
- added zlib include line to otflib/Makefile.am

1.2.15
1.2.16
- fixed a problem with comments in otfmerge
1.2.17
- bugfixed parser (wrong treatment of unknown records)

51

- bugfixed otfmerge
1.2.18
- fixed autotools problems with otfdump
- added fwrite check for writting less bytes than expected

52

